Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.217
Filtrar
1.
Environ Toxicol Pharmacol ; 107: 104434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582069

RESUMO

The potential toxic effects of linear alkylbenzene sulfonate (LAS), widely used in commercial detergents and cleaners, on submerged macrophytes remain unclear. We conducted a two-week exposure experiment to investigate LAS toxicity on five submerged macrophytes (four native and one exotic), focusing on their growth and physiological responses. The results showed that lower concentrations of LAS (< 5 mg/L) slightly stimulated the growth of submerged macrophytes, while higher doses inhibited it. Increasing LAS concentration resulted in decreased chlorophyll content, increased MDA content and POD activity, and initially increased SOD and CAT activities before declining. Moreover, Elodea nuttallii required a higher effective concentration for growth compared to native macrophytes. These findings suggest that different species of submerged macrophytes exhibited specific responses to LAS, with high doses (exceeding 5 ∼ 10 mg/L) inhibited plant growth and physiology. However, LAS may promote the dominance of surfactant-tolerant exotic submerged macrophytes in polluted aquatic environments.


Assuntos
Ácidos Alcanossulfônicos , Antioxidantes , Clorofila , Tensoativos/toxicidade , Ácidos Alcanossulfônicos/toxicidade
2.
Mar Pollut Bull ; 201: 116280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518574

RESUMO

The utilization of chemical dispersants as a way of mitigating of oil spills in marine eco-system has been extensively documented worldwide. Hence, in this research we have successfully synthesized two amphiphilic asymmetric Dicaionic Ionic Liquids (DILs). The efficacy of these synthesized DILs as dispersants was assessed using the baffled flask test (BFT). The results indicated a dispersant effectiveness ranging from 47.98 % to 79.76 % for the dispersion of heavy crude oil across various temperature ranges (10-30 °C). These dispersant-to-oil ratios (DOR) were maintained at 3: 100 (V%), showcasing promising dispersant capabilities for mitigating heavy crude oil spills. Additionally, acute toxicity tests conducted on Nile tilapia and Oreochromis niloticus have demonstrated the relatively low toxicity of the IL-dispersants, with Lethal Concentration 50 (LC50) values exceeding 100 ppm after 96 h. This suggests a practically slight toxic effect on the tested fish. In summary, the newly developed IL-dispersants are considered to be conducive to environmentally benign oil spill remediation.


Assuntos
Antracenos , Líquidos Iônicos , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Líquidos Iônicos/toxicidade , Tensoativos/toxicidade , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Petróleo/toxicidade
3.
Sci Prog ; 107(1): 368504241231663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490166

RESUMO

This study examined the histological aberrations in the gill and liver tissues and behavioural changes of Tilapia guineensis fingerlings exposed to lethal concentrations of used Oilfield-based emulsifiers for 96 h. Various concentrations of the surfactants were tested, ranging from 0.0 to 15.0 ml/L. The behaviour of the fish was observed throughout the experiment, and the results showed that increasing concentrations of the surfactants led to progressively abnormal behaviour, including hyperventilation and altered opercular beat frequency. These behavioural changes indicated respiratory distress and neurotoxic effects. Histological analysis revealed structural aberrations in the gill and liver tissues, with higher concentrations causing more severe damage, such as lesions, necrosis, inflammation, and cellular degeneration. This implies that surfactants released even at low concentrations are capable of inducing changes in the tissues of aquatic organisms. These findings highlight the toxic effects of the surfactants on fish health and provide biomarkers of toxicity. Future research should focus on understanding the specific mechanisms and long-term consequences of surfactant toxicity on fish genetic composition, populations, and ecosystems to implement effective conservation measures.


Assuntos
Tilápia , Poluentes Químicos da Água , Animais , Ecossistema , Campos de Petróleo e Gás , Papua Nova Guiné , Fígado , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Chemosphere ; 353: 141589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432465

RESUMO

A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.


Assuntos
Etilenoglicóis , Glicerol/análogos & derivados , Metanol , Polissorbatos , Animais , Polissorbatos/toxicidade , Glicerol/toxicidade , Dimetil Sulfóxido , Tensoativos/toxicidade , Solventes/toxicidade , Ouriços-do-Mar , Etanol/farmacologia , Excipientes/química , 1-Propanol , Embrião não Mamífero , Mamíferos , Polietilenoglicóis
5.
J Hazard Mater ; 470: 134109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547751

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are prevalent environmental contaminants that are harmful to ecological and human health. Bioremediation is a promising technique for remediating PAHs in the environment, however bioremediation often results in the accumulation of toxic PAH metabolites. The objectives of this research were to demonstrate the cometabolic treatment of a mixture of PAHs by a pure bacterial culture, Rhodococcus rhodochrous ATCC 21198, and investigate PAH metabolites and toxicity. Additionally, the surfactant Tween ® 80 and cell immobilization techniques were used to enhance bioremediation. Total PAH removal ranged from 70-95% for fluorene, 44-89% for phenanthrene, 86-97% for anthracene, and 6.5-78% for pyrene. Maximum removal was achieved with immobilized cells in the presence of Tween ® 80. Investigation of PAH metabolites produced by 21198 revealed a complex mixture of hydroxylated compounds, quinones, and ring-fission products. Toxicity appeared to increase after bioremediation, manifesting as mortality and developmental effects in embryonic zebrafish. 21198's ability to rapidly transform PAHs of a variety of molecular structures and sizes suggests that 21198 can be a valuable microorganism for catalyzing PAH remediation. However, implementing further treatment processes to address toxic PAH metabolites should be pursued to help lower post-remediation toxicity in future studies.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Tensoativos , Peixe-Zebra , Rhodococcus/metabolismo , Tensoativos/toxicidade , Tensoativos/química , Tensoativos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Animais , Células Imobilizadas/metabolismo , Polissorbatos/toxicidade , Polissorbatos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Fenantrenos/química , Embrião não Mamífero/efeitos dos fármacos
6.
Environ Int ; 185: 108472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368720

RESUMO

Synthetic surfactant products are continuously released into the aquatic environment in large quantities, posing a burden on ecosystems as a "pseudo-persistent" organic pollutant. Threshold derivation for protecting aquatic ecosystems is challenging due to the various homologous components of surfactants. In this study, five commercially available products were chosen as representative major types of surfactants. Corresponding quantitative structure-activity relationships (QSAR) were screened and subsequently combined with interspecific correlation estimation (ICE) to develop species sensitivity distributions (SSDs) for each component. Then, the 5th percentile hazard concentrations (HC5s) were calculated. The results indicated that the developed QSAR-ICE models demonstrated good toxicity prediction performance. The HC5 of each component showed a negatively correlation with alkyl chain length and a positive correlation with the amount of ethylene oxide. The HC5s of surfactants correlate with variations in their charged properties. Quaternary ammonium compounds (QAC) exhibited the lowest HC5s (8.5 ± 18.3 µg/L), followed by alcohol ethoxylates (AE), linear alkylbenzene sulfonates (LAS), and alcohol ethoxylated sulfates (AES); and alkyl oxide (AO) exhibited the highest HC5s (15784.2 ± 21552.6 µg/L). For cationic surfactants, the HC5s in the invertebrates were significantly lower than those in the fish; conversely, for anionic surfactants, the opposite was true, indicating a difference in the toxic mechanisms of surfactants with different charged properties across species taxa. Additionally, among invertebrates, shellfish demonstrated heightened sensitivity to surfactants, owing to their high accumulation and low metabolism of pollutants. Salmoniformes were the most sensitive among all species, indicating the necessity of prioritizing these species for aquatic ecological conservation in surfactant-contaminated waters.


Assuntos
Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Tensoativos/toxicidade , Invertebrados , Água Doce
7.
Langmuir ; 40(4): 2242-2253, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221732

RESUMO

Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.


Assuntos
Anti-Infecciosos , DNA , Transfecção , DNA/química , Hidrocarbonetos , Tensoativos/toxicidade , Tensoativos/química , Anti-Infecciosos/toxicidade
8.
J Oleo Sci ; 73(1): 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171725

RESUMO

Studies devised through the fusion of cleaning and environmental sciences can be summarized as follows: new cleaning kinetics applying a probability density function and a surface chemical approach to the aquatic toxicity of surfactants. Cleaning power analysis using the probability density functional method combines conventional cleaning kinetics using a first-order reaction equation with a risk analysis method using a probability density function. It is possible to analyze the cleaning mechanism from the obtained parameter values. It is also possible to determine whether the interaction between two different cleaning elements corresponds to a synergistic, additive, or offsetting effect. Studies on the aquatic toxicity of surfactants have focused on the surface tension at which surfactants exhibit toxicity, changes in toxicity due to water quality, and biodegradation, and the presence of adsorbed substances have been identified.


Assuntos
Tensoativos , Tensoativos/toxicidade , Tensoativos/química , Cinética
9.
Environ Toxicol Chem ; 43(1): 222-233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861380

RESUMO

Trisiloxane surfactants are often applied in formulated adjuvant products to blooming crops, including almonds, exposing the managed honey bees (Apis mellifera) used for pollination of these crops and persisting in colony matrices, such as bee bread. Despite this, little is known regarding the effects of trisiloxane surfactants on important aspects of colony health, such as reproduction. In the present study, we use laboratory assays to examine how exposure to field-relevant concentrations of three trisiloxane surfactants found in commonly used adjuvant formulations affect queen oviposition rates, worker interactions with the queen, and worker susceptibility to endogenous viral pathogens. Trisiloxane surfactants were administered at 5 mg/kg in pollen supplement diet for 14 days. No effects on worker behavior or physiology could be detected, but our results demonstrate that hydroxy-capped trisiloxane surfactants can negatively affect queen oviposition and methyl-capped trisiloxane surfactants cause increased replication of Deformed Wing Virus in workers, suggesting that trisiloxane surfactant use while honey bees are foraging may negatively impact colony longevity and growth. Environ Toxicol Chem 2024;43:222-233. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Vírus de RNA , Tensoativos , Humanos , Feminino , Abelhas , Animais , Tensoativos/toxicidade , Reprodução , Replicação Viral
10.
Sci Total Environ ; 912: 169176, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086477

RESUMO

The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L-1). However, 10 mg L-1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10-100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SYNOPSIS: The concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.


Assuntos
Chlorella vulgaris , Scenedesmus , Poluentes Químicos da Água , Animais , Plâncton , Tensoativos/toxicidade , Polissorbatos/toxicidade , Daphnia , Poluentes Químicos da Água/toxicidade
11.
Sci Total Environ ; 913: 169748, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160813

RESUMO

Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.


Assuntos
Artrópodes , Melatonina , Oligoquetos , Poluentes do Solo , Animais , Melatonina/farmacologia , Tensoativos/toxicidade , Solo , Reprodução , Lipoproteínas/farmacologia , Água , Poluentes do Solo/análise
12.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570764

RESUMO

Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.


Assuntos
Citrus sinensis , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Tensoativos/toxicidade , Tensoativos/metabolismo , Poluição por Petróleo/análise , Citrus sinensis/metabolismo , Peixe-Zebra/metabolismo , Poluentes Químicos da Água/análise
13.
Regul Toxicol Pharmacol ; 143: 105441, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37433368

RESUMO

In contrast to water-soluble respiratory tract irritants in their gas phase, the physicochemical properties of 'hydrophilicity' vs. 'lipophilicity' are the preponderant factors that dictate the site of major retention of the gas at the portal of entry. The lipophilic physical properties of phosgene gas facilitate retention in the alveolar region lined with amphipathic pulmonary surfactant (PS). The relationship between exposure and adverse health outcomes is complex, may vary over time, and is dependent on the biokinetics, biophysics, and pool size of PS relative to the inhaled dose of phosgene. Kinetic PS depletion is hypothesized to occur as inhalation followed by inhaled dose-dependent PS depletion. A kinetic model was developed to better understand the variables characterizing the inhaled dose rates of phosgene vs. PS pool size reconstitution. Modeling and empirical data from published evidence revealed that phosgene gas unequivocally follows a concentration x exposure (C × t) metric, independent of the frequency of exposure. The modeled and empirical data support the hypothesis that the exposure standards of phosgene are described best by a C × t time-averaged metric. Modeled data favorably duplicate expert panel-derived standards. Peak exposures within a reasonable range are of no concern.


Assuntos
Fosgênio , Surfactantes Pulmonares , Fosgênio/toxicidade , Exposição por Inalação/efeitos adversos , Benchmarking , Pulmão/patologia , Tensoativos/toxicidade
14.
Toxicology ; 492: 153546, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187339

RESUMO

Currently, testing of acute inhalation toxicity in animals is required for regulation of pesticide active ingredients and formulated plant protection products. The main outcome of the regulatory tests is "lethal concentration 50″ (LC50), i.e. the concentration that will kill 50% of the exposed animals. However, ongoing work aims to identify New Approach Methods (NAMs) to replace animal experiments. To this end, we studied 11 plant protection products, sold in the European Union (EU), for their ability to inhibit lung surfactant function in vitro in the constrained drop surfactometer (CDS). In vivo, inhibition of lung surfactant function can lead to alveolar collapse and reduction of tidal volume. Therefore, we also assessed changes in breathing patterns of mice during exposure to the same products. Six of the eleven products inhibited lung surfactant function, and six products reduced tidal volume in mice. In vitro inhibition of lung surfactant function predicted reduction in tidal volume in exposed mice with a sensitivity of 67% and a specificity of 60%. Two products were labelled as "harmful if inhaled", both inhibited surfactant function in vitro and reduced tidal volume in mice. Lung surfactant function inhibition in vitro predicted reduction in tidal volume for plant protection products to a lesser degree than for previously tested substances. This could owe to the requirement for rigorous testing of plant protection products prior to approval that might have selected against substances that could potentially inhibit lung surfactant, e.g. due to severe adverse effects during inhalation.


Assuntos
Pulmão , Surfactantes Pulmonares , Camundongos , Animais , Volume de Ventilação Pulmonar , Surfactantes Pulmonares/toxicidade , Administração por Inalação , Tensoativos/toxicidade
15.
Environ Toxicol Chem ; 42(8): 1685-1695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37222283

RESUMO

The effects of silver nanoparticles (Ag NPs) on the soil environment have attracted considerable research attention. Previous studies mainly focused on agent-coated Ag NPs, which inevitably introduce additional disturbance of chemical agents to the intrinsic property of Ag NPs. We investigated the environmental effects induced by pure surfactant-free Ag NPs (SF-Ag NPs), including soil enzyme activities (urease, sucrase, phosphatase, and ß-glucosidase), bacterial community structure, and functional profile, over different exposure periods in the present study. The results indicated that these enzymes, especially urease and phosphatases, exhibit different responses to SF-Ag NPs and are more susceptible to SF-Ag NPs than other enzymes. Surfactant-free Ag NPs can also induce a decrease in bacterial diversity and a change of bacterial community structure. The abundance of SF-Ag NPs in Proteobacteria increased, but decreased in Acidobacteria after 14 days of exposure. Moreover, the abundance of genus Cupriavidus was significantly higher than those of the respective controls. By contrast, SF-Ag NP exposure for 30 days could attenuate these negative effects. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) prediction revealed that SF-Ag NPs exert a negligible effect on bacterial function, thereby suggesting that functional redundancy is conduced to bacterial community tolerance to SF-Ag NPs. These findings will help us further understand the environmental toxicity of Ag NPs. Environ Toxicol Chem 2023;42:1685-1695. © 2023 SETAC.


Assuntos
Nanopartículas Metálicas , Solo , Solo/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Tensoativos/toxicidade , Filogenia , Urease , Bactérias
16.
Anal Bioanal Chem ; 415(11): 2121-2132, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36829041

RESUMO

Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.


Assuntos
Fracionamento por Campo e Fluxo , Nanoestruturas , Surfactantes Pulmonares , Técnicas de Cultura de Células , Meios de Cultura , Fracionamento por Campo e Fluxo/métodos , Nanoestruturas/toxicidade , Nanoestruturas/química , Tamanho da Partícula , Fuligem/toxicidade , Tensoativos/toxicidade , Ponto Isoelétrico
17.
Toxicol In Vitro ; 89: 105576, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36809832

RESUMO

The purpose of this study was to develop a defined approach (DA) for eye hazard identification according to the three UN GHS categories for surfactants (DASF). The DASF is based on a combination of Reconstructed human Cornea-like Epithelium test methods (OECD TG 492; EpiOcular™ EIT and SkinEthic™ HCE EIT) and the modified Short Time Exposure (STE) test method (0.5% concentration of the test substance after a 5-min exposure). DASF performance was assessed by comparing the prediction results with the historical in vivo data classification and against the criteria established by the OECD expert group on eye/skin. The DASF yielded a balanced accuracy of 80.5% and 90.9% of Cat. 1 (N = 22), 75.0% of Cat. 2 (N = 8), and 75.5% of No Cat. (N = 17) surfactants were correctly predicted. The percentage of mispredictions was below the established maximum values except for in vivo No Cat. surfactants that were over-predicted as Cat. 1 (5.6%, N = 17), with a maximum value set at 5%. The percentage of correct predictions did meet the minimum performance values of 75% Cat. 1, 50% Cat. 2, and 70% No Cat. established by the OECD experts. The DASF has shown to be successful for eye hazard identification of surfactants.


Assuntos
Olho , Surfactantes Pulmonares , Humanos , Animais , Tensoativos/toxicidade , Irritantes/toxicidade , Testes de Toxicidade/métodos , Córnea , Nações Unidas , Alternativas aos Testes com Animais , Reprodutibilidade dos Testes
18.
Sci Total Environ ; 873: 162440, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842577

RESUMO

The excessive application of antibiotics and surfactants resulted in their massive accumulation in waste activated sludge (WAS), but the co-occurrent impacts of antibiotics and surfactants on the antibiotic resistant genes (ARGs) fates have seldom reported. This work mainly revealed the roles and critical mechanisms of sodium dodecyl benzene sulfonate (SDBS) on the sulfadiazine (SDZ) stressing for ARGs distribution during WAS anaerobic fermentation. High-throughput qPCR and metagenomic analysis revealed that SDBS aggravated the SDZ selective pressure, and accelerated the proliferation of ARGs. The total abundance of ARGs was increased from 8.81 × 1010 in SDZ to 1.17 × 1011 copies/g TSS in the SDBS/SDZ co-occurrence system. Specifically, the absolute abundances of ermF (MLSB), mefA (MLSB), tetM-01 (tetracycline), tetX (tetracycline), sul2 (sulfonamide) and strB (aminoglycoside) were risen from 4.60 × 108-7.44 × 109 copies/g TSS in the SDZ reactor to 1.02 × 109-4.63 × 1010 copies/g TSS in SDBS/SDZ reactor. SDBS was contributed to the SDZ solubilization and simultaneously effective in disintegrating extracellular polymeric substances and improving cell membrane permeability, which would facilitate the SDZ transport and its interactions with ARGs hosts. Consequently, the microbial community structure was evidently altered, and the typical ARGs hosts (i.e., Saccharimonadales and Ahniella) were greatly enriched. Also, the cell signal transduction systems (i.e., glnL, glrK and pilG), oxidative stress response (i.e., frmA and recA) and bacterial secretion systems (i.e., VirB4), which were related with ARGs propagation, were all provoked in the co-occurred SDBS/SDZ reactor compared with that of sole SDZ. PLS-PM analysis suggested that the bacterial community was the predominant factor that determined the ARGs fates, followed by mobile genetic elements and metabolic pathway. This work demonstrated the interactive effects of surfactants and antibiotics on the ARGs fates in WAS fermentation systems and gave insightful implications on the ecological risks of different exogenous pollutants.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/toxicidade , Esgotos/microbiologia , Fermentação , Tensoativos/toxicidade , Anaerobiose , Genes Bacterianos , Sulfadiazina , Tetraciclina , Resistência Microbiana a Medicamentos/genética , Proliferação de Células
19.
Ecotoxicology ; 32(2): 150-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680666

RESUMO

Current international legislation regarding agrochemicals requires thorough toxicological testing mainly of the active ingredients. In a 96-h acute toxicity test we exposed Rana dalmatina and Bufo bufo tadpoles to either one of three concentrations of glyphosate, three concentrations of the surfactant (POEA), three concentrations of the two components together, or to non-contaminated water (control), and subsequently assessed mortality and body mass. To investigate whether simultaneous exposure to another stress factor influences effects of the contaminants, we performed tests both in the presence or absence of predator chemical cues. We found that the surfactant had significant harmful effects on tadpoles; survival was lowered by the highest concentration of the surfactant in case of R. dalmatina, while in B. bufo tadpoles it reduced survival already at medium concentrations. Body mass was significantly influenced by medium and high surfactant concentrations in both species. The presence of glyphosate did not have a significant effect by itself, but it slightly increased mortality in tadpoles exposed to medium concentrations of the surfactant in both species. The presence of chemical cues did not have an effect on the examined variables. Our study confirms that the toxicity of glyphosate-based herbicides is mainly due to the examined surfactant. Nonetheless, we found that glyphosate can enhance the harmful effect of the surfactant. These results stress that during the authorization process of new pesticide formulations, not only the active ingredients would need to be examined but the excipients should also be taken into account in an obligatory and systematic manner.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Bufonidae , Larva
20.
Toxicol In Vitro ; 88: 105557, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681289

RESUMO

Under the current EU chemicals legislation, in vitro test methods became the preferred methods to identify and classify the skin irritation potential of chemicals and mixtures. Among these, especially in vitro skin models are widely used. For surfactants, a well-known group of typically irritating chemicals, it is a long-standing experience that the irritation potential of a mixture of surfactants is typically lower than the irritation potential of the single surfactants, an effect usually described as surfactant antagonism. In order to evaluate if this effect can be observed in skin model systems as well, the irritation potential of the surfactants and of their mixtures was determined in the Open Source Reconstructed Epidermis (OS-REp) models. Combinations of sodium dodecyl sulfate or linear alkylbenzene sulfonate with cocoamidopropyl betain and alkyl polyglycosid, respectively, resulted in a clear decrease of the irritation potential compared to the irritation exerted by the single surfactants. The effect appeared to be primarily driven by the mixture's lower ability to damage the skin model's barrier, as shown by a reduced fluorescein permeation.


Assuntos
Surfactantes Pulmonares , Tensoativos , Tensoativos/toxicidade , Epiderme , Pele , Dodecilsulfato de Sódio/toxicidade , Células Epidérmicas , Irritantes/toxicidade , Testes de Irritação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...